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ABSTRACT

A G"|M|1 queue is defined as a single server queue with exponential :
service time and general cyclic arrival distributions of cycle length n. i'
_ The waiting time distribution for such a queue is proved to be a sum of | ;
! n exponential terms; this is a generalization of G|M|1 queue results. Z}
! Based on this a method for obtaining the steady-state waiting time distri- :
butions for G"IM|1 queues is introduced. An example is presented to f?
show an application of G"lM|1 queues in deterministic routing.
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I. INTRODUCTION

In this paper we consider the behavior of single server queues in

th
which the service time distribution S(t) is exponential. The i~ inter-

arrival time is assumed to have a distribution Ai(t) (or density ai(t)).
In the most general case all Ai's may be different. Here, however, we
consider the case where the sequence of Ai's consists of a repeating
cycle of length n. In other words the kth. n+kth. 2n+kth, ... arrivals
have the same interarrival distribution A, for k=1 ... n. These distri-
butions are assumed to have rational Laplace transforms. tle refer to
this queueing system as G"!Mll system. Such queueing systems arise in

computer networks using deterministic routing.

The behaviour of a G“[Mll system may be characterized in terms of
its virtual waiting time where the virtual waiting time at any instant
is the unfinished work at the server. This is a well known approach
used in the study of GI|G|1 systems [1, 2, 3, 4].

- ™q virtual waiting time for a G|M|1 queue is known to have an
exponential steady state distribution [3, 5]. Here we prove that the
steady state distribution for the virtual waiting time of a G"|M|1
queue is a sum of n exponential terms. The approach taken in this paper

. uses the decay characteristics of the expected virtual waiting time in
the future. In section Il after introducing the necessary notation,
the equivalence of the expected virtual waiting time decay function and
the virtual waiting time distribution function are established. The
solution for the steady state expected virtual waiting time decay

function for a G"IMII queuing system is obtained in section III. An

. example for application of the results of a G"|M|1 queue is given in

e
“
3
‘ .

Section 1IV.




II. NOTATION

The approach used here is based on the results presented in [4].
For the sake of completeness, in the following we present the notations
and results relevant to the discussion here.

Consider a server providing service to arriving customers
according to a first-in-first-out discipline. Let the service need of
a customer be determined probab11ist1ca11y and defined by a service time
distribution S(t) (or a corresponding service time density function s(t)).
We are interested in characterizing this queuing system in terms of the
virtual waiting time t(t) at time instant t. Let the density and the
distribution functions of t(t) be w(t,t) and W(t,t), respectively. Clearly,
these functions are defined fort 20 and t 2 0.

In the virtual waiting time density w(t,t), t is the random variable
and t is a parameter of this density function. For a given value of t,
T specifies the waiting time from t onwards and hence t specifies the
origin for t. When we change the value of Tt to t; in w(t,t) the origin
for t is changed with it to reflect the waiting time corresponding to
the instant t-

When an arrival occurs at time T the waiting time density function

immediately after the arrival, w(r,T+) may be expressed as

+ T -
wit,T') = [ w(e,T") s(t-c)do +(2.1)

As a result of the arrival, the waiting time undergoes a step change
in that r(T+) = t(T") + service time. Therefore, the density of the waiting
time after the arrival at time T is obtained by convolving w(t,T") with
the density function of the service time s(t). Similarly, the distribution

function of the waiting time after an arrival at time T is given as




W(r, 1) -f;(a.f‘) s(t-g)do - (2.2)
or 0

Nt TY) = W, T ) @s(r) - (2.3)

where @ {s the convolution operator.

Having seen how w(t,t) changes when an arrival occurs, let us see how
1t changes with time when no arrival occurs. Given w(x,T) and that no
arrivals occur between T and T+T4s w(r.Td-Tl) is given as

T
w(z,T+T;) = s(r)fwlo.l’)do + wlteT,,T)
0 v >0 (2.4)
and '
u(t-.m]) = W(TeT,,T) T20~(2.5)
where &(t) is the unit impulse function [3].

w(t,T)

w(t,T)
\\
Y T 0 n
T '(/
w(t T+Ty)
w(e, T+T' )

¢
ToT, | T+,
Figure 1 Figure 2
The effect of no arrivals between time T and 1’-l-'l’1 is explained in
Figure 1. The origin of ¢ for w(r, T+T;) is changed to T+T; as shown in

3
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the figure. The magnitude of the delta function at t=0 for w(t, T+T1)
corresponds to the probability of the event {0 <t(T) <T1}. This pro-
bability is simply the shaded area of w(t,T). The corresponding changes
to the distribution function (Equation 2.5) are shown in Figure 2.

If we are given the arrival instants and the initial waiting time
distribution, we may comﬁute w(t,t) for any time t using equations (2.1)- 1
(2.5). Note that no assumptions are made about the characteristics of
the arrival process. The complete transient solution for the waiting
time distribution may thus be obtained.

If we are only interested in the epochs just before or just after
the arrivals and not necessarily at particular time instants we may use

the following result:

gy

Let Un+(1,0) be the waiting time density function after the nth

arrival at time 0. The waiting time density function just before

the next arrival n+l is given as

1

Vit
’
\

s fw (et 2 (t)dt -+ (2.6)
it fown(r ) a(t)

where an(t) is the interarrival time density for the next arrival

and wn(r,t) is computed from wn(r,O) using equation (2.4). EL
These recults can also be_used to.ohtain.the steady state_solution, 37
1f one exists. To arrive ~t the steady state behavior we observe ' ]
that the waiting time distribution remains the same immediately before
(or immediately after) each arrival. Let an arrival (say the nth) occur at
time 0 and the system is in steady-state. Then, given the next arrival
occurs at t, w(~,t) is obtained using equation (2.4). But as random
arrivals may occur, w(t,t) is only a conditional density function for

the waiting time seen by the next arrival. This marginal density is given

by equation (2.6). Under the steady state condition, we may equate either




wn_(r) to un+1-(r). or wn+(r) to wn+1+(r). Therefore, W(t) is the steady
state waiting time distribution function if and only if W(t) satisfies

W(t) = ./(;.l:/;.‘.l(o"'t) a(t) s(rt~o)dtdo - (2.7)

Note that by rearranging the terms in équition (2.7)'L1nd'|ey's integral
equation [2] results.

While t(t) is a stochastic process which is completely characterized
by the desity function w(t,t), in many practical situations we are interested
in calculating the expected value of t(t), Ew(t). Knowing w(t,t), Ew(t)

may be calculated using the following equation

[}
E,(t) =fr w(t,t)de -+ (2.8) _.
0 1
Note tHat equation (2.8) involves w(t,t). In order to use it in calculating 5
Ew(t) for an arbitrary t, w(t,t) must be known for all <.
We define Ew_(t) and Ew_(t). to be the expected virtual waiting time
at instant t evaluated immediately after and before an arrival occuring at A
1

t=0, respectively. .q
As shown in[4], E"(t) before and after an arrival is related as follows. i

E o(t) = Eg(t) + E,_(0)(1-5(t)) + s(t) ® E,_(¢)

- (2.9)
and
E,.(t) = ‘{ a(T) E,(t+T)dT tz20 - (2.10)
were  Eg(t) = [ T s(taTar. - (2.11)

Equation (2.9) allows us toccompute Ew(t) given Ew_(t) and the occurence
of an arrival. Equation (2.10) may then be used to evaluate E"_(t) Just
before the next arrival given the interarrival density function a(t) for
the next arrival. These equations czn be used to evaluate the steady state

Z
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values for these functions when such a steady state exists.

The relationship between Ew(t) and w(t,0) is established in Theorem 1.
Theorem 1 - Ew(t) and w(t,0) are equivalent in that given one the other
is uniquely determined.
Proof - (a) Given w(t,0), equations (2.8) and (2.5) uniquely determine
E,(t).
(b) Given E_(t) we may write [S]
.'Ew(tj_.a, Lé[l_—vu(‘f.‘t)]dt.
From equation (2.5)
E () = /;Q [1-u(t+r, 0)]de

= f u[l-H(v.O)]dv.
t

Let 1-W(v,0) = Y(v,0)

Thus, E{t) = j; U(v,0)dv.

[- -]
Also, EJt+At) = U(v,0)dv.
t+at
Ew(t+At) - Ew(t) _1 t+At
At At

Therefore,

U(v,0)dv
In the limit as At =+ 0

d, (t)
dt

2 o U(t,O) = -(I-H(t,O)).

' dE_(t)
Thus ¥(t,0) = Ew( + 1.
dt

This completes the proof of Theorem I. a

The approach taken in this paper uses Ew(t) to characterize the queuing
system. Clearly, from E"(t) the distribution functions for the virtual
wafting time can be eviluated.

- ik i




II1. SOLUTION TO G"|M|1 SYSTEM

Consider a first-in-first-out exponential server with 3
s(t) = ue-ut.
Let the 1™ fnterarrival distribution and density be A,(t) and a,(t),
respectively. Also, let Ew.{(t) and':ﬁ+1(t) be the expected virtual waiting

time decay functions just before and after the 1th arrival. .
Assume that the arrivals to this server consist of a repeating cycle

of length n in that

a (t) = a,(t) for i = 1,2,...,n
T+kn 1 and k = 1,2,3....
In the steady state, if one exists,
B, (t) = E,, (t)
and 1+kn L for i = 1,2,...,n
and k = 1,2,3....
E (t) = E_ (t). 1
¥{+kn w4 - (3.1) 3
To solve this system we use equation (2.9) to evaluate Ew+ (t) given
i :
Ew- (t) and use equation (2.10) to evaluate E,- (t) given Evt (t). 3
i i+ 1 j

These combined with equation (3.1) are then used to obtain the steady

state values of Ew(t) functions. Note that for the exponential service
time
= Lg-ut
Es(t) ce
and S(t) = 1 - ¢t
From equatfon (2.9)

SO Levt s,,_i(oue'"‘) +E,. (1) @ ue vt

B, (8) = (,_ (0) + Levt o £y, () ® yevt
tz20
Also, 0) +La 0
M SO Ew'i( ) + 2 Ew+1( )

«le

i S A — N ) ) . " . o




Thus ,
SOR Ewi(o)e'"t + 6, (8) ® et - (3.2)
tz=0
from equation (2.10)

E""Hl(t) 'fo a;,1(T) Ew+1(t+T)dT t=0 -+ (3.3)

Let us define the Laplace transforms of E _ (t) & E _ (t) as
i i

Ly, (8) = fo" O s20  +(3.4)

and L. (s) =f e'StE (t)dt s=20 -+ (3.5)
W=y 0 W=y

Note that as Ew_i(t) and Ew-i(t) are defined for t 2 0, Lw+1.(s) and L_ (s)

i
are analytic in the right halfplane of s. Also, as Ew(t) functions are

positive and integrable the transforms Lw(s) exist [3].
Taking the transform of equation (3.2) we may write
1

Lw+i(s) - E“*i(o) ==t Lw_i(s) s ke -+ (3.6)

Equation (3.3) expresses a form of convolution which is defined only

for t 2 0. If we were to add a function of the form

_[0 2441 (T (E4T)aT t<0
we may write the corresponding tranforms as [3]:
G ;,1(s) +1L (s) =L, (-s) L., (s) -+ (3.7)
i+l W= i1 341 W

where G-i+1(s) is a function of s which is analytic in the left half plane
of s.
Before proceeding further we need the following Lemmas.
et a(t) be the density function of the interarrival time with a
rational laplace transform La(s).

Lemma 1 " +s~vL-a-( -s). can be written as




oL (s) = 07(s) +07(s) ~+ (3.8)

where

¢+(s) is analytic for Re(s) >0 and ¢ (s) is analytic for Re(s) <0,

And that o+(s) has the form ¢ (s) = -u—f_? where ¢ is a constant.

Proof. As La(s) is rational we may write it as

n-l n-2
+ + ...+
La(s) = %-18 %n-gs %

n n-1
an + Bn-ls + ...'*80

Note that a(t) is defined for t >0 only. Thus, l_.a(_s) 1s analytic in the right
half plane and has polés only in the left half plane.
Therefore, La(-s) is analytic in the left half plane and has poles only in the

right half plane. Clearly, the product
. -
u+s La( S)
has one pole in the left half plane and the rest in the right half plane.

Therefore, this function can be written as ¢~.+(s) +4 (s) where

+ .
¢ (s) = -£_ where ¢ is a constant.

uts
This completes the proof. n
Lemma 2
a\" 1 * -
(u+s) ifl Lai(-s) can be written as & (s) + ¢ (s)
where
+ n ¢y
¢ (s)= L — -+ (3.9)
i=1  (uts)
Proof. This directly follows from the Lemma 1. [ ]

We observe that multiplying the expression by an rational function v

which 1s analytic in the left half plane will still yield a decomposition




in which o"'(s) has the form shown in equation (3.9)

Lemna 3 |
L“'n(s) = x(S)L,,,o(S) +Y{s) - z(s)
where
niy
x(s) -[1 1('u+s) L, (- s)J
L n L j( ) :
¥(s) = Z w~ 0
B B e, ‘j-i uts }
and
) n-1 n |
2(s B jﬂ!it*1 E'+?" (-s)p 674(s) = (3.10) .
.

Proof. Follows from a repetitive application of equations (3.6) and (3.7). ®

For the fiext two Lemmas Tét us Consider a distributfon function F(x),

x 20 with expected value 8 and Laplacé transform L ().

Lemma 4 If (a) Re(s) =0, |w|<1 or (b) Re(s) >0, [w|s1 or

(c) uB >n and Re(s) 2 0, |w| s 1 then the equation j

" wf¢ls + u(1-2))
has exactly m roots z = sr(s,w)(r-l,z,...m) in the unit circle [2| < 1. ‘
We have 1

Un d j
o () Yew ™ [ @ Uogues)) ™

J=1

-+ (3.11a)

2ir/n th

where € e (r=1,2,...m) are the m
Proof. See [6, page 126]. a

Lemma S Let & = 6',(0.1) where & (s,w) is given by equation (3.1la).

roots of unity.

If u8 > m then 61.62...6"' are the m roots in z of the equation

«10-




=L uir-2)) | - (3.118)
in the unit circle |2] <1. If uB s m then 810890048, 1 Are the m-1

roots in z of (3.11b) in the unitcircle |z| <1, whereas 8§y = 1.
Proof. See [6, page 126]. a

We further observe that equation (3.11b) always has one root at z = 1. This

is because forcitf(s) to be a Laplace transform of a probability distribution

P FORS!

Theorem 2 - In a G"IMII queue where the arrival distributions have rational

Laplace transform,

nooa,
t,(s) = 1Ei T, | -+ (3.12)
where Lw_(s) is the Laplace transform of Ew_(t) at the beginning of a
cycle, a,'s are constants and ci's are the n roots of the equation
n 1
[1- 1n1 5 a (-s)] =0
in the region [s| <u.
Proof - For a G"|M|1 queue with a cycle of Tength n, in the steady state,
if one exists, L"'n(S) . Lw_o(s) * L, (s). Inorder to find L (s)
we use Lemma 3 and the technique of spectral factorization [7]. We may ?
write equation (3.10) as i
Ly (8) = x(s) L,_(s) + Y(s) - 2(s)
or {1 - x(s))} L, _(s) = ¥(s) - z(s) - (3.13)

In order to use the spectral factorization teckaijue we need to express

1-x(s) = 9—(5.).
v (5) - (3.14)

where qf(s) is analytic in the right half plane and ¢ (s) is amalytic in
the left half plane. From equation (3.10)

u+s

x(s) = (_L)"EILH(.;) + (3.140)

-11-

e




n
As L, (s) is the Laplace transform of a density function ai(t) and 1!% Lai(s)
i =

is the Laplace transform of the sum of n random variables coming from

n
densities a,(t), a,(t) ... a (t). Thus, 1 L, (s) is a Laplace transform
1 2 n j=1 &4

of a valid density function. By substituting

uis .,

we may express the equation
1-x(s)=0 -+ (3.14b)
in the form of (3.11b). From Lemma 5 this equation has n roots. Let
the negative of these roots be Sy» i=1,2,...,n. We note that s = 0 is also
a root of this equation. Using these roots we may write ¢f(s) and ¢ (s) as
n
s 0 (s+,)

v (s) = ‘%ﬁ_‘ + (3.15)

S i;l (S+;'l)
C(s) = ——— + (3.16)
O s 1ex(s))

Clearly, qf(s) and ¢ (s) satisfy the necessary conditions for spectral
factoriztion [7]. From equations (3.13) and (3.14) we write

Le(s) &'1s] = g (s) [¥(s) - 2(s)] + (3.17)
From Lemma 2

¢ (s) [¥(s) - 2(s)] = ¢*(s) + ¢7(s) + (3.18)

+ (3.19)

From equations (3.17) and (3.18)
L,.(s)e'(s) - a%(s) = &7(s)
A strajghtforward use of the analytic continuation arguments and Liouville's
Theorem (7] implies
L,.(s)g"(s) - 0*(s) = 0°(s) = X
where K {s a constant.

 e12e



Therefore,

+
(s) » =2 (s) !
e ) 4

Substituting from equations (3.15) and (3.19), we have

Lot = sl [, z ] + (3.20)

1reyt
s 0 (s+) =1 (uts)
i=1
To evaluate K we note that 1im E_(t) =0
t. o
Hence, ;
n _ n ¢
Vim sl (s) = 0= Tim (sl [x+ T —‘—T]
si» 0 s+0 o (s+c,) i=1 (u+s) 3
i=] :
This implies that
z o (3.21)
K= % - .
i=1 ;T

Using equations (3.21) in (3.20) and simplifying we get

ls"'1 "2, .+ d

d
L,.(s) = ==
- n
o (s+y)
i=]

* dn-Z 0

where di's are constants.
or L (s)= % ( 21
’ W= f=1 \ S*54

where ai's are constants.
This completes the proof. ‘ s
Theorem 3 - A G"|M|1 queue has a steady state solution if u8 > n where
g = % ) t ai(t)dt
i=1 40

Proof - From Lemma 5 we observe that when ug < n one of the n roots of the

equation (3.11b) becomes S, * 1. This root corrosponds to Ty * 0. Thus

a
s ° |

from Theorem 2 Lw_(s) has a termm of the form




As a consequence lim s Lw_(s),and hence 1lim E, (t) is finite. This cannot
s ~+0 tim ¥
be true for a steady state solution of the queue. Therefore the queue ]
reaches a steady state if and only if u8 > n and hence the theorem. B
The existence of a steady state has been established in Theorem 3

under the condition ug > n. As B is simply the expected length of time

for n arrivals, this condition is no different from the standard steady

state condition of p < 1.

A G|M|1 queue corresponds to a G"iM|1 queue with n=1, since the solutions

given above for the G"IMII queue correspond to the well known solutions of

G|M|1 queue when we take n = 1,

The form of Lw_(s) given by equation (3.12) implies that in steady
state Ew_(t) can be expressed as a sum of n exponential terms where the
exponent coefficients are determined from the roots of the eguation
(3.14b). From the form of x(s) as given in equation (3.14a), the roots
of equation (3.14b) do not depend or the order of ai's in the sequence.

The initial value, Ew_(O) does depend on the sequence, however.

To obtain the steady state solution of a G"IMII system, one approach
is to apply the spectral factorization technique used in the proof of
Theorem 2 to determine the coefficients ui's. The coefficients ;1'5
are obtained as roots of equation(3.14a)using the results of Lemma 5.

An alternate approach to obtaining the coefficients uj's {s to assume

n .t
E"'l(t) = zl ase h -+ (3.22)
and substitute this in equations (3.2) and (3.3) . Also,
n

0) =
Ew.l() jEI ay

1 n
and (0) ==+ ¢ «
Thus from equation (3.2) we have




i tj'u i=1 H‘CJ
-+ (3.23)
Using equation (3.3) along with equation (3.23) we get
t) = z; _.-Ll e Mt
B, gt 5 dje e,
n .
M =5t
+ JE} oy (M-CJ) Laz(;j)e 3 -+ (3.24)

As the form of EH_(t) remains the same for each step in the cycle, in
equation (3.24) we must have

1, 7o
T Ej:& =0 - (3.25)
Then
n
= -L t -
E,,,.z(t) 351 ay (;‘1;7) L,Z(cj)e 3 (3.26)
Similarly,
2
. -5t
E,,_ (t) 351 aj(ﬁ) Laz(cj)L%((J)e 3
and )
Ly g oL ){2)e oo - (3.27)
u J." b CJ-D M-CJ .2 ‘J ¢

After the n“ step we have

s




§
é

P

n n
E,,,](t)-zw_ (t) = ¢ aj(#) {nL (z )} "¢yt | '

n+l j= k=1 2k

-+ (3.28,
yielding n Tinear equations of the type (3.27). _
Clearly, the equality of E_ (t) and E,. (t) holds where ‘
1 n+l 1
o 3
u-cJ ) k-1 (;j . for § =1,2...n ?
-+ (3.29) 1

The ci's obtained as negative roots of equation (3.14b) satisfy equation
(3.29). The values of ai's are obtained by solving n 1inear equations of
the form (3.25), (3.27), etc. A solution for a G"|M|1 queue may, therefore,
be obtained by finding n roots of equation (3.14b) and solving a set of

n linear equations. This approach is simpler than the spectral factorization

technique. In the next section we present an example of obtaining the

steady state solution for a 6"|M|1 queue.




IV. APPLICATICN

A situation in which s"/llfl queues occur is when an arrival stream
is split among k servers using a deterministic sequence, the arrivals
seen by each server form a cyclic pattern. For example consider the 2

server system shown in Figure 3. The arrivals at box D are

o s 5 R LN 5, T S A

/®__
—

Figure 3

1
%
:

sent to the two servers using a sequence of length 3

1 12

2k e AN L. L5 0

Let the arrivals to D be independent with a general distribution F(t).

Let us denote the i-fold convolution, F(”(t) by
i times

()« Flt) @ F(E) @...® F(t)

The arrivals seen by server 1 follow a cyclic pattern

F(ey, Fqy),

- b, A o U e’ M8 5

Similarly, thearrivals at servers 2 follow general arrivals from
B,
Queue 1 is of the Gzl M|1 type and can be analysed using the results of
this paper.
In particular, let us consider the arrivals to D be Poission with
rate i, i.e.,
F(t) =1 - et




PRy Ty
’

Let the service rates of the two servers be W and My. For server 1,

F1(t) is the same as F(t) and Fz(t) is given by

F(t) ® F(t) , , ]
A A
Thus, L.1(s) and Laz(s) are 33 and(x;;) , respectively. Equation (3.14b)
reduces to . 3 ,
u
) N R %
(ﬁ) (-KTS-) 1 v (4.1) :

Also, we have the two linear equations

) e A A7 SR
T e B = (4.2)

2 2
G u §o0 u
and R i (lic ) L — (xﬁz ) =0
LG B B B 1 (3p=uy) (uy-g,) V772

r=> (4.3)

As a numerical example let M o= 0-2 and A = 0-1.
In this case we get
5 * 0-14913
& = 0-23295
o - 1-41565
a, = -0-10789

Thus E,_(t) = 1.41565 7014913t -0.23295¢

- 0.1079 e

From this we note that,
Ew_(O) = 1.30776

E,,(0) = 6-30776

The before and after arrival values of the expected virtual waiting time,

after the next arrival, are 2-4556 and 74556, respectively.




A solution ébr this example obtafned by an {terative solution of
' the transient equations has been reported in [4]. The solution obtained
here is exactly the same as the one reported in {4].
For this example, the interarrival times seen by server 2 have the

same three stage hypo-exponentfal distributfon. The expected waiting
time seen by an arrival routed to this server by the above sequence can
be obtained by using the standard solutfon to G|M{1 queue. For u = 0.1,
the expected waiting time is 11.9403. Thus, the expected waiting time
for an arrival to these two servers using the deterministic routing is
8.5679. If the routing were done at random with probability 2/3 for
server 1 and 1/3 for server 2 the expected waiting time would have been

10.00. It s interesting to note that in this case a deterministic

deciston rule does better than a probabilitic rule.




v. SUMMARY

In this paper the steady state behavior of an exponential, first-in-
first-out queue with cyclic arrivals has been analyzed. This arrival
structure is a generalization of G|M|1 queues. The well known result of
G|M|1 queues that the waiting time is exponentially distributed has been
generalized to the G"ln]l queue. This generalization )ie1ds an easier
technique for solving a given G"IMll queue. An example to show the use

of the results has been presented, as well.
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